Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles

نویسندگان

  • Jason D Ryan
  • Desalegn Alemu Mengistie
  • Roger Gabrielsson
  • Anja Lund
  • Christian Müller
چکیده

Durable, electrically conducting yarns are a critical component of electronic textiles (e-textiles). Here, such yarns with exceptional wear and wash resistance are realized through dyeing silk from the silkworm Bombyx mori with the conjugated polymer:polyelectrolyte complex PEDOT:PSS. A high Young's modulus of approximately 2 GPa combined with a robust and scalable dyeing process results in up to 40 m long yarns that maintain their bulk electrical conductivity of approximately 14 S cm-1 when experiencing repeated bending stress as well as mechanical wear during sewing. Moreover, a high degree of ambient stability is paired with the ability to withstand both machine washing and dry cleaning. For the potential use for e-textile applications to be illustrated, an in-plane thermoelectric module that comprises 26 p-type legs is demonstrated by embroidery of dyed silk yarns onto a piece of felted wool fabric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-destructive Evaluation of Historic Textiles by Compression Measurement Using the “kawabata Evaluation System (kes)”

key words: Textile conservation, black-dyed silk, tensile test, compression resilience, accelerated ageing To propose a new non-destructive assessment procedure for historic Suga-yarns using the “Kawabata Evaluation System (KES)”, compression resilience (RC) was compared with tensile breaking strain, which is traditionally used to measure mechanical properties of yarns. Modern raw silk yarns dy...

متن کامل

Washable and Reliable Textile Electrodes Embedded into Underwear Fabric for Electrocardiography (ECG) Monitoring

A medical quality electrocardiogram (ECG) signal is necessary for permanent monitoring, and an accurate heart examination can be obtained from instrumented underwear only if it is equipped with high-quality, flexible, textile-based electrodes guaranteeing low contact resistance with the skin. The main objective of this article is to develop reliable and washable ECG monitoring underwear able to...

متن کامل

Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies

UNLABELLED BACKGROUND For millennia, iron-tannate dyes have been used to colour ceremonial and domestic objects shades of black, grey, or brown. Surviving iron-tannate dyed objects are part of our cultural heritage but their existence is threatened by the dye itself which can accelerate oxidation and acid hydrolysis of the substrate. This causes many iron-tannate dyed textiles to discolour a...

متن کامل

New Erbium(ΙΙΙ) Complexes as Mordants for Natural Dyeing of Silk

The aim of this research is to develop new mordants and a wide range of colors for natural dyeing of silk. In this study, two new erbium(ΙΙΙ) complexes, [Er(AO)(H2O)7](OAc)3 and [Er(AMH)(H2O)6](OAc)3 (AO = acridine orange, AMH = azomethine-H, and OAc = acetate anion), were synthesized, characterized and used as a mordant for the natural dyeing of silk yarns with an aqueous extract of green waln...

متن کامل

E-broidery: Design and fabrication of textile-based computing

Highly durable, flexible, and even washable multilayer electronic circuitry can be constructed on textile substrates, using conductive yarns and suitably packaged components. In this paper we describe the development of e-broidery (electronic embroidery, i.e., the patterning of conductive textiles by numerically controlled sewing or weaving processes) as a means of creating computationally acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017